LLVM OpenMP* Runtime Library
z_Linux_util.cpp
1 /*
2  * z_Linux_util.cpp -- platform specific routines.
3  */
4 
5 
6 //===----------------------------------------------------------------------===//
7 //
8 // The LLVM Compiler Infrastructure
9 //
10 // This file is dual licensed under the MIT and the University of Illinois Open
11 // Source Licenses. See LICENSE.txt for details.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 
16 #include "kmp.h"
17 #include "kmp_affinity.h"
18 #include "kmp_i18n.h"
19 #include "kmp_io.h"
20 #include "kmp_itt.h"
21 #include "kmp_lock.h"
22 #include "kmp_stats.h"
23 #include "kmp_str.h"
24 #include "kmp_wait_release.h"
25 #include "kmp_wrapper_getpid.h"
26 
27 #if !KMP_OS_FREEBSD && !KMP_OS_NETBSD
28 #include <alloca.h>
29 #endif
30 #include <math.h> // HUGE_VAL.
31 #include <sys/resource.h>
32 #include <sys/syscall.h>
33 #include <sys/time.h>
34 #include <sys/times.h>
35 #include <unistd.h>
36 
37 #if KMP_OS_LINUX && !KMP_OS_CNK
38 #include <sys/sysinfo.h>
39 #if KMP_USE_FUTEX
40 // We should really include <futex.h>, but that causes compatibility problems on
41 // different Linux* OS distributions that either require that you include (or
42 // break when you try to include) <pci/types.h>. Since all we need is the two
43 // macros below (which are part of the kernel ABI, so can't change) we just
44 // define the constants here and don't include <futex.h>
45 #ifndef FUTEX_WAIT
46 #define FUTEX_WAIT 0
47 #endif
48 #ifndef FUTEX_WAKE
49 #define FUTEX_WAKE 1
50 #endif
51 #endif
52 #elif KMP_OS_DARWIN
53 #include <mach/mach.h>
54 #include <sys/sysctl.h>
55 #elif KMP_OS_FREEBSD
56 #include <pthread_np.h>
57 #endif
58 
59 #include <ctype.h>
60 #include <dirent.h>
61 #include <fcntl.h>
62 
63 #include "tsan_annotations.h"
64 
65 struct kmp_sys_timer {
66  struct timespec start;
67 };
68 
69 // Convert timespec to nanoseconds.
70 #define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec)
71 
72 static struct kmp_sys_timer __kmp_sys_timer_data;
73 
74 #if KMP_HANDLE_SIGNALS
75 typedef void (*sig_func_t)(int);
76 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
77 static sigset_t __kmp_sigset;
78 #endif
79 
80 static int __kmp_init_runtime = FALSE;
81 
82 static int __kmp_fork_count = 0;
83 
84 static pthread_condattr_t __kmp_suspend_cond_attr;
85 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
86 
87 static kmp_cond_align_t __kmp_wait_cv;
88 static kmp_mutex_align_t __kmp_wait_mx;
89 
90 kmp_uint64 __kmp_ticks_per_msec = 1000000;
91 
92 #ifdef DEBUG_SUSPEND
93 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
94  KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
95  cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
96  cond->c_cond.__c_waiting);
97 }
98 #endif
99 
100 #if (KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED)
101 
102 /* Affinity support */
103 
104 void __kmp_affinity_bind_thread(int which) {
105  KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
106  "Illegal set affinity operation when not capable");
107 
108  kmp_affin_mask_t *mask;
109  KMP_CPU_ALLOC_ON_STACK(mask);
110  KMP_CPU_ZERO(mask);
111  KMP_CPU_SET(which, mask);
112  __kmp_set_system_affinity(mask, TRUE);
113  KMP_CPU_FREE_FROM_STACK(mask);
114 }
115 
116 /* Determine if we can access affinity functionality on this version of
117  * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
118  * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
119 void __kmp_affinity_determine_capable(const char *env_var) {
120 // Check and see if the OS supports thread affinity.
121 
122 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
123 
124  int gCode;
125  int sCode;
126  unsigned char *buf;
127  buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
128 
129  // If Linux* OS:
130  // If the syscall fails or returns a suggestion for the size,
131  // then we don't have to search for an appropriate size.
132  gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf);
133  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
134  "initial getaffinity call returned %d errno = %d\n",
135  gCode, errno));
136 
137  // if ((gCode < 0) && (errno == ENOSYS))
138  if (gCode < 0) {
139  // System call not supported
140  if (__kmp_affinity_verbose ||
141  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
142  (__kmp_affinity_type != affinity_default) &&
143  (__kmp_affinity_type != affinity_disabled))) {
144  int error = errno;
145  kmp_msg_t err_code = KMP_ERR(error);
146  __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
147  err_code, __kmp_msg_null);
148  if (__kmp_generate_warnings == kmp_warnings_off) {
149  __kmp_str_free(&err_code.str);
150  }
151  }
152  KMP_AFFINITY_DISABLE();
153  KMP_INTERNAL_FREE(buf);
154  return;
155  }
156  if (gCode > 0) { // Linux* OS only
157  // The optimal situation: the OS returns the size of the buffer it expects.
158  //
159  // A verification of correct behavior is that Isetaffinity on a NULL
160  // buffer with the same size fails with errno set to EFAULT.
161  sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
162  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
163  "setaffinity for mask size %d returned %d errno = %d\n",
164  gCode, sCode, errno));
165  if (sCode < 0) {
166  if (errno == ENOSYS) {
167  if (__kmp_affinity_verbose ||
168  (__kmp_affinity_warnings &&
169  (__kmp_affinity_type != affinity_none) &&
170  (__kmp_affinity_type != affinity_default) &&
171  (__kmp_affinity_type != affinity_disabled))) {
172  int error = errno;
173  kmp_msg_t err_code = KMP_ERR(error);
174  __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
175  err_code, __kmp_msg_null);
176  if (__kmp_generate_warnings == kmp_warnings_off) {
177  __kmp_str_free(&err_code.str);
178  }
179  }
180  KMP_AFFINITY_DISABLE();
181  KMP_INTERNAL_FREE(buf);
182  }
183  if (errno == EFAULT) {
184  KMP_AFFINITY_ENABLE(gCode);
185  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
186  "affinity supported (mask size %d)\n",
187  (int)__kmp_affin_mask_size));
188  KMP_INTERNAL_FREE(buf);
189  return;
190  }
191  }
192  }
193 
194  // Call the getaffinity system call repeatedly with increasing set sizes
195  // until we succeed, or reach an upper bound on the search.
196  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
197  "searching for proper set size\n"));
198  int size;
199  for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
200  gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
201  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
202  "getaffinity for mask size %d returned %d errno = %d\n",
203  size, gCode, errno));
204 
205  if (gCode < 0) {
206  if (errno == ENOSYS) {
207  // We shouldn't get here
208  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
209  "inconsistent OS call behavior: errno == ENOSYS for mask "
210  "size %d\n",
211  size));
212  if (__kmp_affinity_verbose ||
213  (__kmp_affinity_warnings &&
214  (__kmp_affinity_type != affinity_none) &&
215  (__kmp_affinity_type != affinity_default) &&
216  (__kmp_affinity_type != affinity_disabled))) {
217  int error = errno;
218  kmp_msg_t err_code = KMP_ERR(error);
219  __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
220  err_code, __kmp_msg_null);
221  if (__kmp_generate_warnings == kmp_warnings_off) {
222  __kmp_str_free(&err_code.str);
223  }
224  }
225  KMP_AFFINITY_DISABLE();
226  KMP_INTERNAL_FREE(buf);
227  return;
228  }
229  continue;
230  }
231 
232  sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
233  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
234  "setaffinity for mask size %d returned %d errno = %d\n",
235  gCode, sCode, errno));
236  if (sCode < 0) {
237  if (errno == ENOSYS) { // Linux* OS only
238  // We shouldn't get here
239  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
240  "inconsistent OS call behavior: errno == ENOSYS for mask "
241  "size %d\n",
242  size));
243  if (__kmp_affinity_verbose ||
244  (__kmp_affinity_warnings &&
245  (__kmp_affinity_type != affinity_none) &&
246  (__kmp_affinity_type != affinity_default) &&
247  (__kmp_affinity_type != affinity_disabled))) {
248  int error = errno;
249  kmp_msg_t err_code = KMP_ERR(error);
250  __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
251  err_code, __kmp_msg_null);
252  if (__kmp_generate_warnings == kmp_warnings_off) {
253  __kmp_str_free(&err_code.str);
254  }
255  }
256  KMP_AFFINITY_DISABLE();
257  KMP_INTERNAL_FREE(buf);
258  return;
259  }
260  if (errno == EFAULT) {
261  KMP_AFFINITY_ENABLE(gCode);
262  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
263  "affinity supported (mask size %d)\n",
264  (int)__kmp_affin_mask_size));
265  KMP_INTERNAL_FREE(buf);
266  return;
267  }
268  }
269  }
270  // save uncaught error code
271  // int error = errno;
272  KMP_INTERNAL_FREE(buf);
273  // restore uncaught error code, will be printed at the next KMP_WARNING below
274  // errno = error;
275 
276  // Affinity is not supported
277  KMP_AFFINITY_DISABLE();
278  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
279  "cannot determine mask size - affinity not supported\n"));
280  if (__kmp_affinity_verbose ||
281  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
282  (__kmp_affinity_type != affinity_default) &&
283  (__kmp_affinity_type != affinity_disabled))) {
284  KMP_WARNING(AffCantGetMaskSize, env_var);
285  }
286 }
287 
288 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
289 
290 #if KMP_USE_FUTEX
291 
292 int __kmp_futex_determine_capable() {
293  int loc = 0;
294  int rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
295  int retval = (rc == 0) || (errno != ENOSYS);
296 
297  KA_TRACE(10,
298  ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
299  KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
300  retval ? "" : " not"));
301 
302  return retval;
303 }
304 
305 #endif // KMP_USE_FUTEX
306 
307 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
308 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
309  use compare_and_store for these routines */
310 
311 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
312  kmp_int8 old_value, new_value;
313 
314  old_value = TCR_1(*p);
315  new_value = old_value | d;
316 
317  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
318  KMP_CPU_PAUSE();
319  old_value = TCR_1(*p);
320  new_value = old_value | d;
321  }
322  return old_value;
323 }
324 
325 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
326  kmp_int8 old_value, new_value;
327 
328  old_value = TCR_1(*p);
329  new_value = old_value & d;
330 
331  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
332  KMP_CPU_PAUSE();
333  old_value = TCR_1(*p);
334  new_value = old_value & d;
335  }
336  return old_value;
337 }
338 
339 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
340  kmp_uint32 old_value, new_value;
341 
342  old_value = TCR_4(*p);
343  new_value = old_value | d;
344 
345  while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
346  KMP_CPU_PAUSE();
347  old_value = TCR_4(*p);
348  new_value = old_value | d;
349  }
350  return old_value;
351 }
352 
353 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
354  kmp_uint32 old_value, new_value;
355 
356  old_value = TCR_4(*p);
357  new_value = old_value & d;
358 
359  while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
360  KMP_CPU_PAUSE();
361  old_value = TCR_4(*p);
362  new_value = old_value & d;
363  }
364  return old_value;
365 }
366 
367 #if KMP_ARCH_X86
368 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
369  kmp_int8 old_value, new_value;
370 
371  old_value = TCR_1(*p);
372  new_value = old_value + d;
373 
374  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
375  KMP_CPU_PAUSE();
376  old_value = TCR_1(*p);
377  new_value = old_value + d;
378  }
379  return old_value;
380 }
381 
382 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
383  kmp_int64 old_value, new_value;
384 
385  old_value = TCR_8(*p);
386  new_value = old_value + d;
387 
388  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
389  KMP_CPU_PAUSE();
390  old_value = TCR_8(*p);
391  new_value = old_value + d;
392  }
393  return old_value;
394 }
395 #endif /* KMP_ARCH_X86 */
396 
397 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
398  kmp_uint64 old_value, new_value;
399 
400  old_value = TCR_8(*p);
401  new_value = old_value | d;
402  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
403  KMP_CPU_PAUSE();
404  old_value = TCR_8(*p);
405  new_value = old_value | d;
406  }
407  return old_value;
408 }
409 
410 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
411  kmp_uint64 old_value, new_value;
412 
413  old_value = TCR_8(*p);
414  new_value = old_value & d;
415  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
416  KMP_CPU_PAUSE();
417  old_value = TCR_8(*p);
418  new_value = old_value & d;
419  }
420  return old_value;
421 }
422 
423 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
424 
425 void __kmp_terminate_thread(int gtid) {
426  int status;
427  kmp_info_t *th = __kmp_threads[gtid];
428 
429  if (!th)
430  return;
431 
432 #ifdef KMP_CANCEL_THREADS
433  KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
434  status = pthread_cancel(th->th.th_info.ds.ds_thread);
435  if (status != 0 && status != ESRCH) {
436  __kmp_msg(kmp_ms_fatal, KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
437  __kmp_msg_null);
438  }; // if
439 #endif
440  __kmp_yield(TRUE);
441 } //
442 
443 /* Set thread stack info according to values returned by pthread_getattr_np().
444  If values are unreasonable, assume call failed and use incremental stack
445  refinement method instead. Returns TRUE if the stack parameters could be
446  determined exactly, FALSE if incremental refinement is necessary. */
447 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
448  int stack_data;
449 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD
450  /* Linux* OS only -- no pthread_getattr_np support on OS X* */
451  pthread_attr_t attr;
452  int status;
453  size_t size = 0;
454  void *addr = 0;
455 
456  /* Always do incremental stack refinement for ubermaster threads since the
457  initial thread stack range can be reduced by sibling thread creation so
458  pthread_attr_getstack may cause thread gtid aliasing */
459  if (!KMP_UBER_GTID(gtid)) {
460 
461  /* Fetch the real thread attributes */
462  status = pthread_attr_init(&attr);
463  KMP_CHECK_SYSFAIL("pthread_attr_init", status);
464 #if KMP_OS_FREEBSD || KMP_OS_NETBSD
465  status = pthread_attr_get_np(pthread_self(), &attr);
466  KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
467 #else
468  status = pthread_getattr_np(pthread_self(), &attr);
469  KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
470 #endif
471  status = pthread_attr_getstack(&attr, &addr, &size);
472  KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
473  KA_TRACE(60,
474  ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
475  " %lu, low addr: %p\n",
476  gtid, size, addr));
477  status = pthread_attr_destroy(&attr);
478  KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
479  }
480 
481  if (size != 0 && addr != 0) { // was stack parameter determination successful?
482  /* Store the correct base and size */
483  TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
484  TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
485  TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
486  return TRUE;
487  }
488 #endif /* KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD */
489  /* Use incremental refinement starting from initial conservative estimate */
490  TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
491  TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
492  TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
493  return FALSE;
494 }
495 
496 static void *__kmp_launch_worker(void *thr) {
497  int status, old_type, old_state;
498 #ifdef KMP_BLOCK_SIGNALS
499  sigset_t new_set, old_set;
500 #endif /* KMP_BLOCK_SIGNALS */
501  void *exit_val;
502 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD
503  void *volatile padding = 0;
504 #endif
505  int gtid;
506 
507  gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
508  __kmp_gtid_set_specific(gtid);
509 #ifdef KMP_TDATA_GTID
510  __kmp_gtid = gtid;
511 #endif
512 #if KMP_STATS_ENABLED
513  // set __thread local index to point to thread-specific stats
514  __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
515  KMP_START_EXPLICIT_TIMER(OMP_worker_thread_life);
516  KMP_SET_THREAD_STATE(IDLE);
517  KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
518 #endif
519 
520 #if USE_ITT_BUILD
521  __kmp_itt_thread_name(gtid);
522 #endif /* USE_ITT_BUILD */
523 
524 #if KMP_AFFINITY_SUPPORTED
525  __kmp_affinity_set_init_mask(gtid, FALSE);
526 #endif
527 
528 #ifdef KMP_CANCEL_THREADS
529  status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
530  KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
531  // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
532  status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
533  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
534 #endif
535 
536 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
537  // Set FP control regs to be a copy of the parallel initialization thread's.
538  __kmp_clear_x87_fpu_status_word();
539  __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
540  __kmp_load_mxcsr(&__kmp_init_mxcsr);
541 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
542 
543 #ifdef KMP_BLOCK_SIGNALS
544  status = sigfillset(&new_set);
545  KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
546  status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
547  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
548 #endif /* KMP_BLOCK_SIGNALS */
549 
550 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD
551  if (__kmp_stkoffset > 0 && gtid > 0) {
552  padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
553  }
554 #endif
555 
556  KMP_MB();
557  __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
558 
559  __kmp_check_stack_overlap((kmp_info_t *)thr);
560 
561  exit_val = __kmp_launch_thread((kmp_info_t *)thr);
562 
563 #ifdef KMP_BLOCK_SIGNALS
564  status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
565  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
566 #endif /* KMP_BLOCK_SIGNALS */
567 
568  return exit_val;
569 }
570 
571 #if KMP_USE_MONITOR
572 /* The monitor thread controls all of the threads in the complex */
573 
574 static void *__kmp_launch_monitor(void *thr) {
575  int status, old_type, old_state;
576 #ifdef KMP_BLOCK_SIGNALS
577  sigset_t new_set;
578 #endif /* KMP_BLOCK_SIGNALS */
579  struct timespec interval;
580  int yield_count;
581  int yield_cycles = 0;
582 
583  KMP_MB(); /* Flush all pending memory write invalidates. */
584 
585  KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
586 
587  /* register us as the monitor thread */
588  __kmp_gtid_set_specific(KMP_GTID_MONITOR);
589 #ifdef KMP_TDATA_GTID
590  __kmp_gtid = KMP_GTID_MONITOR;
591 #endif
592 
593  KMP_MB();
594 
595 #if USE_ITT_BUILD
596  // Instruct Intel(R) Threading Tools to ignore monitor thread.
597  __kmp_itt_thread_ignore();
598 #endif /* USE_ITT_BUILD */
599 
600  __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
601  (kmp_info_t *)thr);
602 
603  __kmp_check_stack_overlap((kmp_info_t *)thr);
604 
605 #ifdef KMP_CANCEL_THREADS
606  status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
607  KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
608  // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
609  status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
610  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
611 #endif
612 
613 #if KMP_REAL_TIME_FIX
614  // This is a potential fix which allows application with real-time scheduling
615  // policy work. However, decision about the fix is not made yet, so it is
616  // disabled by default.
617  { // Are program started with real-time scheduling policy?
618  int sched = sched_getscheduler(0);
619  if (sched == SCHED_FIFO || sched == SCHED_RR) {
620  // Yes, we are a part of real-time application. Try to increase the
621  // priority of the monitor.
622  struct sched_param param;
623  int max_priority = sched_get_priority_max(sched);
624  int rc;
625  KMP_WARNING(RealTimeSchedNotSupported);
626  sched_getparam(0, &param);
627  if (param.sched_priority < max_priority) {
628  param.sched_priority += 1;
629  rc = sched_setscheduler(0, sched, &param);
630  if (rc != 0) {
631  int error = errno;
632  kmp_msg_t err_code = KMP_ERR(error);
633  __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
634  err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
635  if (__kmp_generate_warnings == kmp_warnings_off) {
636  __kmp_str_free(&err_code.str);
637  }
638  }; // if
639  } else {
640  // We cannot abort here, because number of CPUs may be enough for all
641  // the threads, including the monitor thread, so application could
642  // potentially work...
643  __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
644  KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
645  __kmp_msg_null);
646  }; // if
647  }; // if
648  // AC: free thread that waits for monitor started
649  TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
650  }
651 #endif // KMP_REAL_TIME_FIX
652 
653  KMP_MB(); /* Flush all pending memory write invalidates. */
654 
655  if (__kmp_monitor_wakeups == 1) {
656  interval.tv_sec = 1;
657  interval.tv_nsec = 0;
658  } else {
659  interval.tv_sec = 0;
660  interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
661  }
662 
663  KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
664 
665  if (__kmp_yield_cycle) {
666  __kmp_yielding_on = 0; /* Start out with yielding shut off */
667  yield_count = __kmp_yield_off_count;
668  } else {
669  __kmp_yielding_on = 1; /* Yielding is on permanently */
670  }
671 
672  while (!TCR_4(__kmp_global.g.g_done)) {
673  struct timespec now;
674  struct timeval tval;
675 
676  /* This thread monitors the state of the system */
677 
678  KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
679 
680  status = gettimeofday(&tval, NULL);
681  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
682  TIMEVAL_TO_TIMESPEC(&tval, &now);
683 
684  now.tv_sec += interval.tv_sec;
685  now.tv_nsec += interval.tv_nsec;
686 
687  if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
688  now.tv_sec += 1;
689  now.tv_nsec -= KMP_NSEC_PER_SEC;
690  }
691 
692  status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
693  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
694  // AC: the monitor should not fall asleep if g_done has been set
695  if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
696  status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
697  &__kmp_wait_mx.m_mutex, &now);
698  if (status != 0) {
699  if (status != ETIMEDOUT && status != EINTR) {
700  KMP_SYSFAIL("pthread_cond_timedwait", status);
701  };
702  };
703  };
704  status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
705  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
706 
707  if (__kmp_yield_cycle) {
708  yield_cycles++;
709  if ((yield_cycles % yield_count) == 0) {
710  if (__kmp_yielding_on) {
711  __kmp_yielding_on = 0; /* Turn it off now */
712  yield_count = __kmp_yield_off_count;
713  } else {
714  __kmp_yielding_on = 1; /* Turn it on now */
715  yield_count = __kmp_yield_on_count;
716  }
717  yield_cycles = 0;
718  }
719  } else {
720  __kmp_yielding_on = 1;
721  }
722 
723  TCW_4(__kmp_global.g.g_time.dt.t_value,
724  TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
725 
726  KMP_MB(); /* Flush all pending memory write invalidates. */
727  }
728 
729  KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
730 
731 #ifdef KMP_BLOCK_SIGNALS
732  status = sigfillset(&new_set);
733  KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
734  status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
735  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
736 #endif /* KMP_BLOCK_SIGNALS */
737 
738  KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
739 
740  if (__kmp_global.g.g_abort != 0) {
741  /* now we need to terminate the worker threads */
742  /* the value of t_abort is the signal we caught */
743 
744  int gtid;
745 
746  KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
747  __kmp_global.g.g_abort));
748 
749  /* terminate the OpenMP worker threads */
750  /* TODO this is not valid for sibling threads!!
751  * the uber master might not be 0 anymore.. */
752  for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
753  __kmp_terminate_thread(gtid);
754 
755  __kmp_cleanup();
756 
757  KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
758  __kmp_global.g.g_abort));
759 
760  if (__kmp_global.g.g_abort > 0)
761  raise(__kmp_global.g.g_abort);
762  }
763 
764  KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
765 
766  return thr;
767 }
768 #endif // KMP_USE_MONITOR
769 
770 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
771  pthread_t handle;
772  pthread_attr_t thread_attr;
773  int status;
774 
775  th->th.th_info.ds.ds_gtid = gtid;
776 
777 #if KMP_STATS_ENABLED
778  // sets up worker thread stats
779  __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
780 
781  // th->th.th_stats is used to transfer thread-specific stats-pointer to
782  // __kmp_launch_worker. So when thread is created (goes into
783  // __kmp_launch_worker) it will set its __thread local pointer to
784  // th->th.th_stats
785  if (!KMP_UBER_GTID(gtid)) {
786  th->th.th_stats = __kmp_stats_list->push_back(gtid);
787  } else {
788  // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
789  // so set the th->th.th_stats field to it.
790  th->th.th_stats = __kmp_stats_thread_ptr;
791  }
792  __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
793 
794 #endif // KMP_STATS_ENABLED
795 
796  if (KMP_UBER_GTID(gtid)) {
797  KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
798  th->th.th_info.ds.ds_thread = pthread_self();
799  __kmp_set_stack_info(gtid, th);
800  __kmp_check_stack_overlap(th);
801  return;
802  }; // if
803 
804  KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
805 
806  KMP_MB(); /* Flush all pending memory write invalidates. */
807 
808 #ifdef KMP_THREAD_ATTR
809  status = pthread_attr_init(&thread_attr);
810  if (status != 0) {
811  __kmp_msg(kmp_ms_fatal, KMP_MSG(CantInitThreadAttrs), KMP_ERR(status),
812  __kmp_msg_null);
813  }; // if
814  status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
815  if (status != 0) {
816  __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetWorkerState), KMP_ERR(status),
817  __kmp_msg_null);
818  }; // if
819 
820  /* Set stack size for this thread now.
821  The multiple of 2 is there because on some machines, requesting an unusual
822  stacksize causes the thread to have an offset before the dummy alloca()
823  takes place to create the offset. Since we want the user to have a
824  sufficient stacksize AND support a stack offset, we alloca() twice the
825  offset so that the upcoming alloca() does not eliminate any premade offset,
826  and also gives the user the stack space they requested for all threads */
827  stack_size += gtid * __kmp_stkoffset * 2;
828 
829  KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
830  "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
831  gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
832 
833 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
834  status = pthread_attr_setstacksize(&thread_attr, stack_size);
835 #ifdef KMP_BACKUP_STKSIZE
836  if (status != 0) {
837  if (!__kmp_env_stksize) {
838  stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
839  __kmp_stksize = KMP_BACKUP_STKSIZE;
840  KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
841  "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
842  "bytes\n",
843  gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
844  status = pthread_attr_setstacksize(&thread_attr, stack_size);
845  }; // if
846  }; // if
847 #endif /* KMP_BACKUP_STKSIZE */
848  if (status != 0) {
849  __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetWorkerStackSize, stack_size),
850  KMP_ERR(status), KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
851  }; // if
852 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
853 
854 #endif /* KMP_THREAD_ATTR */
855 
856  status =
857  pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
858  if (status != 0 || !handle) { // ??? Why do we check handle??
859 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
860  if (status == EINVAL) {
861  __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetWorkerStackSize, stack_size),
862  KMP_ERR(status), KMP_HNT(IncreaseWorkerStackSize),
863  __kmp_msg_null);
864  };
865  if (status == ENOMEM) {
866  __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetWorkerStackSize, stack_size),
867  KMP_ERR(status), KMP_HNT(DecreaseWorkerStackSize),
868  __kmp_msg_null);
869  };
870 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
871  if (status == EAGAIN) {
872  __kmp_msg(kmp_ms_fatal, KMP_MSG(NoResourcesForWorkerThread),
873  KMP_ERR(status), KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
874  }; // if
875  KMP_SYSFAIL("pthread_create", status);
876  }; // if
877 
878  th->th.th_info.ds.ds_thread = handle;
879 
880 #ifdef KMP_THREAD_ATTR
881  status = pthread_attr_destroy(&thread_attr);
882  if (status) {
883  kmp_msg_t err_code = KMP_ERR(status);
884  __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
885  __kmp_msg_null);
886  if (__kmp_generate_warnings == kmp_warnings_off) {
887  __kmp_str_free(&err_code.str);
888  }
889  }; // if
890 #endif /* KMP_THREAD_ATTR */
891 
892  KMP_MB(); /* Flush all pending memory write invalidates. */
893 
894  KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
895 
896 } // __kmp_create_worker
897 
898 #if KMP_USE_MONITOR
899 void __kmp_create_monitor(kmp_info_t *th) {
900  pthread_t handle;
901  pthread_attr_t thread_attr;
902  size_t size;
903  int status;
904  int auto_adj_size = FALSE;
905 
906  if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
907  // We don't need monitor thread in case of MAX_BLOCKTIME
908  KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
909  "MAX blocktime\n"));
910  th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
911  th->th.th_info.ds.ds_gtid = 0;
912  return;
913  }
914  KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
915 
916  KMP_MB(); /* Flush all pending memory write invalidates. */
917 
918  th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
919  th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
920 #if KMP_REAL_TIME_FIX
921  TCW_4(__kmp_global.g.g_time.dt.t_value,
922  -1); // Will use it for synchronization a bit later.
923 #else
924  TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
925 #endif // KMP_REAL_TIME_FIX
926 
927 #ifdef KMP_THREAD_ATTR
928  if (__kmp_monitor_stksize == 0) {
929  __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
930  auto_adj_size = TRUE;
931  }
932  status = pthread_attr_init(&thread_attr);
933  if (status != 0) {
934  __kmp_msg(kmp_ms_fatal, KMP_MSG(CantInitThreadAttrs), KMP_ERR(status),
935  __kmp_msg_null);
936  }; // if
937  status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
938  if (status != 0) {
939  __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetMonitorState), KMP_ERR(status),
940  __kmp_msg_null);
941  }; // if
942 
943 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
944  status = pthread_attr_getstacksize(&thread_attr, &size);
945  KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
946 #else
947  size = __kmp_sys_min_stksize;
948 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
949 #endif /* KMP_THREAD_ATTR */
950 
951  if (__kmp_monitor_stksize == 0) {
952  __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
953  }
954  if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
955  __kmp_monitor_stksize = __kmp_sys_min_stksize;
956  }
957 
958  KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
959  "requested stacksize = %lu bytes\n",
960  size, __kmp_monitor_stksize));
961 
962 retry:
963 
964 /* Set stack size for this thread now. */
965 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
966  KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
967  __kmp_monitor_stksize));
968  status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
969  if (status != 0) {
970  if (auto_adj_size) {
971  __kmp_monitor_stksize *= 2;
972  goto retry;
973  }
974  kmp_msg_t err_code = KMP_ERR(status);
975  __kmp_msg(kmp_ms_warning, // should this be fatal? BB
976  KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
977  err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
978  if (__kmp_generate_warnings == kmp_warnings_off) {
979  __kmp_str_free(&err_code.str);
980  }
981  }; // if
982 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
983 
984  status =
985  pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
986 
987  if (status != 0) {
988 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
989  if (status == EINVAL) {
990  if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
991  __kmp_monitor_stksize *= 2;
992  goto retry;
993  }
994  __kmp_msg(
995  kmp_ms_fatal, KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
996  KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize), __kmp_msg_null);
997  }; // if
998  if (status == ENOMEM) {
999  __kmp_msg(
1000  kmp_ms_fatal, KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
1001  KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize), __kmp_msg_null);
1002  }; // if
1003 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
1004  if (status == EAGAIN) {
1005  __kmp_msg(kmp_ms_fatal, KMP_MSG(NoResourcesForMonitorThread),
1006  KMP_ERR(status), KMP_HNT(DecreaseNumberOfThreadsInUse),
1007  __kmp_msg_null);
1008  }; // if
1009  KMP_SYSFAIL("pthread_create", status);
1010  }; // if
1011 
1012  th->th.th_info.ds.ds_thread = handle;
1013 
1014 #if KMP_REAL_TIME_FIX
1015  // Wait for the monitor thread is really started and set its *priority*.
1016  KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
1017  sizeof(__kmp_global.g.g_time.dt.t_value));
1018  __kmp_wait_yield_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value,
1019  -1, &__kmp_neq_4, NULL);
1020 #endif // KMP_REAL_TIME_FIX
1021 
1022 #ifdef KMP_THREAD_ATTR
1023  status = pthread_attr_destroy(&thread_attr);
1024  if (status != 0) {
1025  kmp_msg_t err_code = KMP_ERR(status);
1026  __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
1027  __kmp_msg_null);
1028  if (__kmp_generate_warnings == kmp_warnings_off) {
1029  __kmp_str_free(&err_code.str);
1030  }
1031  }; // if
1032 #endif
1033 
1034  KMP_MB(); /* Flush all pending memory write invalidates. */
1035 
1036  KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
1037  th->th.th_info.ds.ds_thread));
1038 
1039 } // __kmp_create_monitor
1040 #endif // KMP_USE_MONITOR
1041 
1042 void __kmp_exit_thread(int exit_status) {
1043  pthread_exit((void *)(intptr_t)exit_status);
1044 } // __kmp_exit_thread
1045 
1046 #if KMP_USE_MONITOR
1047 void __kmp_resume_monitor();
1048 
1049 void __kmp_reap_monitor(kmp_info_t *th) {
1050  int status;
1051  void *exit_val;
1052 
1053  KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
1054  " %#.8lx\n",
1055  th->th.th_info.ds.ds_thread));
1056 
1057  // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1058  // If both tid and gtid are 0, it means the monitor did not ever start.
1059  // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1060  KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1061  if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1062  KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1063  return;
1064  }; // if
1065 
1066  KMP_MB(); /* Flush all pending memory write invalidates. */
1067 
1068  /* First, check to see whether the monitor thread exists to wake it up. This
1069  is to avoid performance problem when the monitor sleeps during
1070  blocktime-size interval */
1071 
1072  status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1073  if (status != ESRCH) {
1074  __kmp_resume_monitor(); // Wake up the monitor thread
1075  }
1076  KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1077  status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1078  if (exit_val != th) {
1079  __kmp_msg(kmp_ms_fatal, KMP_MSG(ReapMonitorError), KMP_ERR(status),
1080  __kmp_msg_null);
1081  }
1082 
1083  th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1084  th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1085 
1086  KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1087  " %#.8lx\n",
1088  th->th.th_info.ds.ds_thread));
1089 
1090  KMP_MB(); /* Flush all pending memory write invalidates. */
1091 }
1092 #endif // KMP_USE_MONITOR
1093 
1094 void __kmp_reap_worker(kmp_info_t *th) {
1095  int status;
1096  void *exit_val;
1097 
1098  KMP_MB(); /* Flush all pending memory write invalidates. */
1099 
1100  KA_TRACE(
1101  10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1102 
1103  status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1104 #ifdef KMP_DEBUG
1105  /* Don't expose these to the user until we understand when they trigger */
1106  if (status != 0) {
1107  __kmp_msg(kmp_ms_fatal, KMP_MSG(ReapWorkerError), KMP_ERR(status),
1108  __kmp_msg_null);
1109  }
1110  if (exit_val != th) {
1111  KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1112  "exit_val = %p\n",
1113  th->th.th_info.ds.ds_gtid, exit_val));
1114  }
1115 #endif /* KMP_DEBUG */
1116 
1117  KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1118  th->th.th_info.ds.ds_gtid));
1119 
1120  KMP_MB(); /* Flush all pending memory write invalidates. */
1121 }
1122 
1123 #if KMP_HANDLE_SIGNALS
1124 
1125 static void __kmp_null_handler(int signo) {
1126  // Do nothing, for doing SIG_IGN-type actions.
1127 } // __kmp_null_handler
1128 
1129 static void __kmp_team_handler(int signo) {
1130  if (__kmp_global.g.g_abort == 0) {
1131 /* Stage 1 signal handler, let's shut down all of the threads */
1132 #ifdef KMP_DEBUG
1133  __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1134 #endif
1135  switch (signo) {
1136  case SIGHUP:
1137  case SIGINT:
1138  case SIGQUIT:
1139  case SIGILL:
1140  case SIGABRT:
1141  case SIGFPE:
1142  case SIGBUS:
1143  case SIGSEGV:
1144 #ifdef SIGSYS
1145  case SIGSYS:
1146 #endif
1147  case SIGTERM:
1148  if (__kmp_debug_buf) {
1149  __kmp_dump_debug_buffer();
1150  }; // if
1151  KMP_MB(); // Flush all pending memory write invalidates.
1152  TCW_4(__kmp_global.g.g_abort, signo);
1153  KMP_MB(); // Flush all pending memory write invalidates.
1154  TCW_4(__kmp_global.g.g_done, TRUE);
1155  KMP_MB(); // Flush all pending memory write invalidates.
1156  break;
1157  default:
1158 #ifdef KMP_DEBUG
1159  __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1160 #endif
1161  break;
1162  }; // switch
1163  }; // if
1164 } // __kmp_team_handler
1165 
1166 static void __kmp_sigaction(int signum, const struct sigaction *act,
1167  struct sigaction *oldact) {
1168  int rc = sigaction(signum, act, oldact);
1169  KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1170 }
1171 
1172 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1173  int parallel_init) {
1174  KMP_MB(); // Flush all pending memory write invalidates.
1175  KB_TRACE(60,
1176  ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1177  if (parallel_init) {
1178  struct sigaction new_action;
1179  struct sigaction old_action;
1180  new_action.sa_handler = handler_func;
1181  new_action.sa_flags = 0;
1182  sigfillset(&new_action.sa_mask);
1183  __kmp_sigaction(sig, &new_action, &old_action);
1184  if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1185  sigaddset(&__kmp_sigset, sig);
1186  } else {
1187  // Restore/keep user's handler if one previously installed.
1188  __kmp_sigaction(sig, &old_action, NULL);
1189  }; // if
1190  } else {
1191  // Save initial/system signal handlers to see if user handlers installed.
1192  __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1193  }; // if
1194  KMP_MB(); // Flush all pending memory write invalidates.
1195 } // __kmp_install_one_handler
1196 
1197 static void __kmp_remove_one_handler(int sig) {
1198  KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1199  if (sigismember(&__kmp_sigset, sig)) {
1200  struct sigaction old;
1201  KMP_MB(); // Flush all pending memory write invalidates.
1202  __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1203  if ((old.sa_handler != __kmp_team_handler) &&
1204  (old.sa_handler != __kmp_null_handler)) {
1205  // Restore the users signal handler.
1206  KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1207  "restoring: sig=%d\n",
1208  sig));
1209  __kmp_sigaction(sig, &old, NULL);
1210  }; // if
1211  sigdelset(&__kmp_sigset, sig);
1212  KMP_MB(); // Flush all pending memory write invalidates.
1213  }; // if
1214 } // __kmp_remove_one_handler
1215 
1216 void __kmp_install_signals(int parallel_init) {
1217  KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1218  if (__kmp_handle_signals || !parallel_init) {
1219  // If ! parallel_init, we do not install handlers, just save original
1220  // handlers. Let us do it even __handle_signals is 0.
1221  sigemptyset(&__kmp_sigset);
1222  __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1223  __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1224  __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1225  __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1226  __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1227  __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1228  __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1229  __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1230 #ifdef SIGSYS
1231  __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1232 #endif // SIGSYS
1233  __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1234 #ifdef SIGPIPE
1235  __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1236 #endif // SIGPIPE
1237  }; // if
1238 } // __kmp_install_signals
1239 
1240 void __kmp_remove_signals(void) {
1241  int sig;
1242  KB_TRACE(10, ("__kmp_remove_signals()\n"));
1243  for (sig = 1; sig < NSIG; ++sig) {
1244  __kmp_remove_one_handler(sig);
1245  }; // for sig
1246 } // __kmp_remove_signals
1247 
1248 #endif // KMP_HANDLE_SIGNALS
1249 
1250 void __kmp_enable(int new_state) {
1251 #ifdef KMP_CANCEL_THREADS
1252  int status, old_state;
1253  status = pthread_setcancelstate(new_state, &old_state);
1254  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1255  KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1256 #endif
1257 }
1258 
1259 void __kmp_disable(int *old_state) {
1260 #ifdef KMP_CANCEL_THREADS
1261  int status;
1262  status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1263  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1264 #endif
1265 }
1266 
1267 static void __kmp_atfork_prepare(void) { /* nothing to do */
1268 }
1269 
1270 static void __kmp_atfork_parent(void) { /* nothing to do */
1271 }
1272 
1273 /* Reset the library so execution in the child starts "all over again" with
1274  clean data structures in initial states. Don't worry about freeing memory
1275  allocated by parent, just abandon it to be safe. */
1276 static void __kmp_atfork_child(void) {
1277  /* TODO make sure this is done right for nested/sibling */
1278  // ATT: Memory leaks are here? TODO: Check it and fix.
1279  /* KMP_ASSERT( 0 ); */
1280 
1281  ++__kmp_fork_count;
1282 
1283 #if KMP_AFFINITY_SUPPORTED
1284 #if KMP_OS_LINUX
1285  // reset the affinity in the child to the initial thread
1286  // affinity in the parent
1287  kmp_set_thread_affinity_mask_initial();
1288 #endif
1289  // Set default not to bind threads tightly in the child (we’re expecting
1290  // over-subscription after the fork and this can improve things for
1291  // scripting languages that use OpenMP inside process-parallel code).
1292  __kmp_affinity_type = affinity_none;
1293 #if OMP_40_ENABLED
1294  if (__kmp_nested_proc_bind.bind_types != NULL) {
1295  __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1296  }
1297 #endif // OMP_40_ENABLED
1298 #endif // KMP_AFFINITY_SUPPORTED
1299 
1300  __kmp_init_runtime = FALSE;
1301 #if KMP_USE_MONITOR
1302  __kmp_init_monitor = 0;
1303 #endif
1304  __kmp_init_parallel = FALSE;
1305  __kmp_init_middle = FALSE;
1306  __kmp_init_serial = FALSE;
1307  TCW_4(__kmp_init_gtid, FALSE);
1308  __kmp_init_common = FALSE;
1309 
1310  TCW_4(__kmp_init_user_locks, FALSE);
1311 #if !KMP_USE_DYNAMIC_LOCK
1312  __kmp_user_lock_table.used = 1;
1313  __kmp_user_lock_table.allocated = 0;
1314  __kmp_user_lock_table.table = NULL;
1315  __kmp_lock_blocks = NULL;
1316 #endif
1317 
1318  __kmp_all_nth = 0;
1319  TCW_4(__kmp_nth, 0);
1320 
1321  /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1322  here so threadprivate doesn't use stale data */
1323  KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1324  __kmp_threadpriv_cache_list));
1325 
1326  while (__kmp_threadpriv_cache_list != NULL) {
1327 
1328  if (*__kmp_threadpriv_cache_list->addr != NULL) {
1329  KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1330  &(*__kmp_threadpriv_cache_list->addr)));
1331 
1332  *__kmp_threadpriv_cache_list->addr = NULL;
1333  }
1334  __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1335  }
1336 
1337  __kmp_init_runtime = FALSE;
1338 
1339  /* reset statically initialized locks */
1340  __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1341  __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1342  __kmp_init_bootstrap_lock(&__kmp_console_lock);
1343 
1344  /* This is necessary to make sure no stale data is left around */
1345  /* AC: customers complain that we use unsafe routines in the atfork
1346  handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1347  in dynamic_link when check the presence of shared tbbmalloc library.
1348  Suggestion is to make the library initialization lazier, similar
1349  to what done for __kmpc_begin(). */
1350  // TODO: synchronize all static initializations with regular library
1351  // startup; look at kmp_global.cpp and etc.
1352  //__kmp_internal_begin ();
1353 }
1354 
1355 void __kmp_register_atfork(void) {
1356  if (__kmp_need_register_atfork) {
1357  int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1358  __kmp_atfork_child);
1359  KMP_CHECK_SYSFAIL("pthread_atfork", status);
1360  __kmp_need_register_atfork = FALSE;
1361  }
1362 }
1363 
1364 void __kmp_suspend_initialize(void) {
1365  int status;
1366  status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1367  KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1368  status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1369  KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1370 }
1371 
1372 static void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1373  ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count);
1374  if (th->th.th_suspend_init_count <= __kmp_fork_count) {
1375  /* this means we haven't initialized the suspension pthread objects for this
1376  thread in this instance of the process */
1377  int status;
1378  status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1379  &__kmp_suspend_cond_attr);
1380  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1381  status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1382  &__kmp_suspend_mutex_attr);
1383  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1384  *(volatile int *)&th->th.th_suspend_init_count = __kmp_fork_count + 1;
1385  ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count);
1386  };
1387 }
1388 
1389 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1390  if (th->th.th_suspend_init_count > __kmp_fork_count) {
1391  /* this means we have initialize the suspension pthread objects for this
1392  thread in this instance of the process */
1393  int status;
1394 
1395  status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1396  if (status != 0 && status != EBUSY) {
1397  KMP_SYSFAIL("pthread_cond_destroy", status);
1398  };
1399  status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1400  if (status != 0 && status != EBUSY) {
1401  KMP_SYSFAIL("pthread_mutex_destroy", status);
1402  };
1403  --th->th.th_suspend_init_count;
1404  KMP_DEBUG_ASSERT(th->th.th_suspend_init_count == __kmp_fork_count);
1405  }
1406 }
1407 
1408 
1409 /* This routine puts the calling thread to sleep after setting the
1410  sleep bit for the indicated flag variable to true. */
1411 template <class C>
1412 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1413  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1414  kmp_info_t *th = __kmp_threads[th_gtid];
1415  int status;
1416  typename C::flag_t old_spin;
1417 
1418  KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1419  flag->get()));
1420 
1421  __kmp_suspend_initialize_thread(th);
1422 
1423  status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1424  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1425 
1426  KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1427  th_gtid, flag->get()));
1428 
1429  /* TODO: shouldn't this use release semantics to ensure that
1430  __kmp_suspend_initialize_thread gets called first? */
1431  old_spin = flag->set_sleeping();
1432 
1433  KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1434  " was %x\n",
1435  th_gtid, flag->get(), *(flag->get()), old_spin));
1436 
1437  if (flag->done_check_val(old_spin)) {
1438  old_spin = flag->unset_sleeping();
1439  KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1440  "for spin(%p)\n",
1441  th_gtid, flag->get()));
1442  } else {
1443  /* Encapsulate in a loop as the documentation states that this may
1444  "with low probability" return when the condition variable has
1445  not been signaled or broadcast */
1446  int deactivated = FALSE;
1447  TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1448 
1449  while (flag->is_sleeping()) {
1450 #ifdef DEBUG_SUSPEND
1451  char buffer[128];
1452  __kmp_suspend_count++;
1453  __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1454  __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1455  buffer);
1456 #endif
1457  // Mark the thread as no longer active (only in the first iteration of the
1458  // loop).
1459  if (!deactivated) {
1460  th->th.th_active = FALSE;
1461  if (th->th.th_active_in_pool) {
1462  th->th.th_active_in_pool = FALSE;
1463  KMP_TEST_THEN_DEC32(&__kmp_thread_pool_active_nth);
1464  KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1465  }
1466  deactivated = TRUE;
1467  }
1468 
1469 #if USE_SUSPEND_TIMEOUT
1470  struct timespec now;
1471  struct timeval tval;
1472  int msecs;
1473 
1474  status = gettimeofday(&tval, NULL);
1475  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1476  TIMEVAL_TO_TIMESPEC(&tval, &now);
1477 
1478  msecs = (4 * __kmp_dflt_blocktime) + 200;
1479  now.tv_sec += msecs / 1000;
1480  now.tv_nsec += (msecs % 1000) * 1000;
1481 
1482  KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1483  "pthread_cond_timedwait\n",
1484  th_gtid));
1485  status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1486  &th->th.th_suspend_mx.m_mutex, &now);
1487 #else
1488  KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1489  " pthread_cond_wait\n",
1490  th_gtid));
1491  status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1492  &th->th.th_suspend_mx.m_mutex);
1493 #endif
1494 
1495  if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1496  KMP_SYSFAIL("pthread_cond_wait", status);
1497  }
1498 #ifdef KMP_DEBUG
1499  if (status == ETIMEDOUT) {
1500  if (flag->is_sleeping()) {
1501  KF_TRACE(100,
1502  ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1503  } else {
1504  KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1505  "not set!\n",
1506  th_gtid));
1507  }
1508  } else if (flag->is_sleeping()) {
1509  KF_TRACE(100,
1510  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1511  }
1512 #endif
1513  } // while
1514 
1515  // Mark the thread as active again (if it was previous marked as inactive)
1516  if (deactivated) {
1517  th->th.th_active = TRUE;
1518  if (TCR_4(th->th.th_in_pool)) {
1519  KMP_TEST_THEN_INC32(&__kmp_thread_pool_active_nth);
1520  th->th.th_active_in_pool = TRUE;
1521  }
1522  }
1523  }
1524 #ifdef DEBUG_SUSPEND
1525  {
1526  char buffer[128];
1527  __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1528  __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1529  buffer);
1530  }
1531 #endif
1532 
1533  status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1534  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1535  KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1536 }
1537 
1538 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) {
1539  __kmp_suspend_template(th_gtid, flag);
1540 }
1541 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) {
1542  __kmp_suspend_template(th_gtid, flag);
1543 }
1544 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1545  __kmp_suspend_template(th_gtid, flag);
1546 }
1547 
1548 /* This routine signals the thread specified by target_gtid to wake up
1549  after setting the sleep bit indicated by the flag argument to FALSE.
1550  The target thread must already have called __kmp_suspend_template() */
1551 template <class C>
1552 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1553  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1554  kmp_info_t *th = __kmp_threads[target_gtid];
1555  int status;
1556 
1557 #ifdef KMP_DEBUG
1558  int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1559 #endif
1560 
1561  KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1562  gtid, target_gtid));
1563  KMP_DEBUG_ASSERT(gtid != target_gtid);
1564 
1565  __kmp_suspend_initialize_thread(th);
1566 
1567  status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1568  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1569 
1570  if (!flag) { // coming from __kmp_null_resume_wrapper
1571  flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1572  }
1573 
1574  // First, check if the flag is null or its type has changed. If so, someone
1575  // else woke it up.
1576  if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
1577  // simply shows what
1578  // flag was cast to
1579  KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1580  "awake: flag(%p)\n",
1581  gtid, target_gtid, NULL));
1582  status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1583  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1584  return;
1585  } else { // if multiple threads are sleeping, flag should be internally
1586  // referring to a specific thread here
1587  typename C::flag_t old_spin = flag->unset_sleeping();
1588  if (!flag->is_sleeping_val(old_spin)) {
1589  KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1590  "awake: flag(%p): "
1591  "%u => %u\n",
1592  gtid, target_gtid, flag->get(), old_spin, *flag->get()));
1593  status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1594  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1595  return;
1596  }
1597  KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1598  "sleep bit for flag's loc(%p): "
1599  "%u => %u\n",
1600  gtid, target_gtid, flag->get(), old_spin, *flag->get()));
1601  }
1602  TCW_PTR(th->th.th_sleep_loc, NULL);
1603 
1604 #ifdef DEBUG_SUSPEND
1605  {
1606  char buffer[128];
1607  __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1608  __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1609  target_gtid, buffer);
1610  }
1611 #endif
1612  status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1613  KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1614  status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1615  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1616  KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1617  " for T#%d\n",
1618  gtid, target_gtid));
1619 }
1620 
1621 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) {
1622  __kmp_resume_template(target_gtid, flag);
1623 }
1624 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) {
1625  __kmp_resume_template(target_gtid, flag);
1626 }
1627 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1628  __kmp_resume_template(target_gtid, flag);
1629 }
1630 
1631 #if KMP_USE_MONITOR
1632 void __kmp_resume_monitor() {
1633  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1634  int status;
1635 #ifdef KMP_DEBUG
1636  int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1637  KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1638  KMP_GTID_MONITOR));
1639  KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1640 #endif
1641  status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1642  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1643 #ifdef DEBUG_SUSPEND
1644  {
1645  char buffer[128];
1646  __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1647  __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1648  KMP_GTID_MONITOR, buffer);
1649  }
1650 #endif
1651  status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1652  KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1653  status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1654  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1655  KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1656  " for T#%d\n",
1657  gtid, KMP_GTID_MONITOR));
1658 }
1659 #endif // KMP_USE_MONITOR
1660 
1661 void __kmp_yield(int cond) {
1662  if (!cond)
1663  return;
1664 #if KMP_USE_MONITOR
1665  if (!__kmp_yielding_on)
1666  return;
1667 #else
1668  if (__kmp_yield_cycle && !KMP_YIELD_NOW())
1669  return;
1670 #endif
1671  sched_yield();
1672 }
1673 
1674 void __kmp_gtid_set_specific(int gtid) {
1675  if (__kmp_init_gtid) {
1676  int status;
1677  status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1678  (void *)(intptr_t)(gtid + 1));
1679  KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1680  } else {
1681  KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1682  }
1683 }
1684 
1685 int __kmp_gtid_get_specific() {
1686  int gtid;
1687  if (!__kmp_init_gtid) {
1688  KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1689  "KMP_GTID_SHUTDOWN\n"));
1690  return KMP_GTID_SHUTDOWN;
1691  }
1692  gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1693  if (gtid == 0) {
1694  gtid = KMP_GTID_DNE;
1695  } else {
1696  gtid--;
1697  }
1698  KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1699  __kmp_gtid_threadprivate_key, gtid));
1700  return gtid;
1701 }
1702 
1703 double __kmp_read_cpu_time(void) {
1704  /*clock_t t;*/
1705  struct tms buffer;
1706 
1707  /*t =*/times(&buffer);
1708 
1709  return (buffer.tms_utime + buffer.tms_cutime) / (double)CLOCKS_PER_SEC;
1710 }
1711 
1712 int __kmp_read_system_info(struct kmp_sys_info *info) {
1713  int status;
1714  struct rusage r_usage;
1715 
1716  memset(info, 0, sizeof(*info));
1717 
1718  status = getrusage(RUSAGE_SELF, &r_usage);
1719  KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1720 
1721  // The maximum resident set size utilized (in kilobytes)
1722  info->maxrss = r_usage.ru_maxrss;
1723  // The number of page faults serviced without any I/O
1724  info->minflt = r_usage.ru_minflt;
1725  // The number of page faults serviced that required I/O
1726  info->majflt = r_usage.ru_majflt;
1727  // The number of times a process was "swapped" out of memory
1728  info->nswap = r_usage.ru_nswap;
1729  // The number of times the file system had to perform input
1730  info->inblock = r_usage.ru_inblock;
1731  // The number of times the file system had to perform output
1732  info->oublock = r_usage.ru_oublock;
1733  // The number of times a context switch was voluntarily
1734  info->nvcsw = r_usage.ru_nvcsw;
1735  // The number of times a context switch was forced
1736  info->nivcsw = r_usage.ru_nivcsw;
1737 
1738  return (status != 0);
1739 }
1740 
1741 void __kmp_read_system_time(double *delta) {
1742  double t_ns;
1743  struct timeval tval;
1744  struct timespec stop;
1745  int status;
1746 
1747  status = gettimeofday(&tval, NULL);
1748  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1749  TIMEVAL_TO_TIMESPEC(&tval, &stop);
1750  t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start);
1751  *delta = (t_ns * 1e-9);
1752 }
1753 
1754 void __kmp_clear_system_time(void) {
1755  struct timeval tval;
1756  int status;
1757  status = gettimeofday(&tval, NULL);
1758  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1759  TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1760 }
1761 
1762 #ifdef BUILD_TV
1763 
1764 void __kmp_tv_threadprivate_store(kmp_info_t *th, void *global_addr,
1765  void *thread_addr) {
1766  struct tv_data *p;
1767 
1768  p = (struct tv_data *)__kmp_allocate(sizeof(*p));
1769 
1770  p->u.tp.global_addr = global_addr;
1771  p->u.tp.thread_addr = thread_addr;
1772 
1773  p->type = (void *)1;
1774 
1775  p->next = th->th.th_local.tv_data;
1776  th->th.th_local.tv_data = p;
1777 
1778  if (p->next == 0) {
1779  int rc = pthread_setspecific(__kmp_tv_key, p);
1780  KMP_CHECK_SYSFAIL("pthread_setspecific", rc);
1781  }
1782 }
1783 
1784 #endif /* BUILD_TV */
1785 
1786 static int __kmp_get_xproc(void) {
1787 
1788  int r = 0;
1789 
1790 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD
1791 
1792  r = sysconf(_SC_NPROCESSORS_ONLN);
1793 
1794 #elif KMP_OS_DARWIN
1795 
1796  // Bug C77011 High "OpenMP Threads and number of active cores".
1797 
1798  // Find the number of available CPUs.
1799  kern_return_t rc;
1800  host_basic_info_data_t info;
1801  mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1802  rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1803  if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1804  // Cannot use KA_TRACE() here because this code works before trace support
1805  // is initialized.
1806  r = info.avail_cpus;
1807  } else {
1808  KMP_WARNING(CantGetNumAvailCPU);
1809  KMP_INFORM(AssumedNumCPU);
1810  }; // if
1811 
1812 #else
1813 
1814 #error "Unknown or unsupported OS."
1815 
1816 #endif
1817 
1818  return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1819 
1820 } // __kmp_get_xproc
1821 
1822 int __kmp_read_from_file(char const *path, char const *format, ...) {
1823  int result;
1824  va_list args;
1825 
1826  va_start(args, format);
1827  FILE *f = fopen(path, "rb");
1828  if (f == NULL)
1829  return 0;
1830  result = vfscanf(f, format, args);
1831  fclose(f);
1832 
1833  return result;
1834 }
1835 
1836 void __kmp_runtime_initialize(void) {
1837  int status;
1838  pthread_mutexattr_t mutex_attr;
1839  pthread_condattr_t cond_attr;
1840 
1841  if (__kmp_init_runtime) {
1842  return;
1843  }; // if
1844 
1845 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1846  if (!__kmp_cpuinfo.initialized) {
1847  __kmp_query_cpuid(&__kmp_cpuinfo);
1848  }; // if
1849 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1850 
1851  __kmp_xproc = __kmp_get_xproc();
1852 
1853  if (sysconf(_SC_THREADS)) {
1854 
1855  /* Query the maximum number of threads */
1856  __kmp_sys_max_nth = sysconf(_SC_THREAD_THREADS_MAX);
1857  if (__kmp_sys_max_nth == -1) {
1858  /* Unlimited threads for NPTL */
1859  __kmp_sys_max_nth = INT_MAX;
1860  } else if (__kmp_sys_max_nth <= 1) {
1861  /* Can't tell, just use PTHREAD_THREADS_MAX */
1862  __kmp_sys_max_nth = KMP_MAX_NTH;
1863  }
1864 
1865  /* Query the minimum stack size */
1866  __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1867  if (__kmp_sys_min_stksize <= 1) {
1868  __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1869  }
1870  }
1871 
1872  /* Set up minimum number of threads to switch to TLS gtid */
1873  __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1874 
1875 #ifdef BUILD_TV
1876  {
1877  int rc = pthread_key_create(&__kmp_tv_key, 0);
1878  KMP_CHECK_SYSFAIL("pthread_key_create", rc);
1879  }
1880 #endif
1881 
1882  status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1883  __kmp_internal_end_dest);
1884  KMP_CHECK_SYSFAIL("pthread_key_create", status);
1885  status = pthread_mutexattr_init(&mutex_attr);
1886  KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1887  status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1888  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1889  status = pthread_condattr_init(&cond_attr);
1890  KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1891  status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1892  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1893 #if USE_ITT_BUILD
1894  __kmp_itt_initialize();
1895 #endif /* USE_ITT_BUILD */
1896 
1897  __kmp_init_runtime = TRUE;
1898 }
1899 
1900 void __kmp_runtime_destroy(void) {
1901  int status;
1902 
1903  if (!__kmp_init_runtime) {
1904  return; // Nothing to do.
1905  };
1906 
1907 #if USE_ITT_BUILD
1908  __kmp_itt_destroy();
1909 #endif /* USE_ITT_BUILD */
1910 
1911  status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1912  KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1913 #ifdef BUILD_TV
1914  status = pthread_key_delete(__kmp_tv_key);
1915  KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1916 #endif
1917 
1918  status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1919  if (status != 0 && status != EBUSY) {
1920  KMP_SYSFAIL("pthread_mutex_destroy", status);
1921  }
1922  status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1923  if (status != 0 && status != EBUSY) {
1924  KMP_SYSFAIL("pthread_cond_destroy", status);
1925  }
1926 #if KMP_AFFINITY_SUPPORTED
1927  __kmp_affinity_uninitialize();
1928 #endif
1929 
1930  __kmp_init_runtime = FALSE;
1931 }
1932 
1933 /* Put the thread to sleep for a time period */
1934 /* NOTE: not currently used anywhere */
1935 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1936 
1937 /* Calculate the elapsed wall clock time for the user */
1938 void __kmp_elapsed(double *t) {
1939  int status;
1940 #ifdef FIX_SGI_CLOCK
1941  struct timespec ts;
1942 
1943  status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1944  KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1945  *t =
1946  (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1947 #else
1948  struct timeval tv;
1949 
1950  status = gettimeofday(&tv, NULL);
1951  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1952  *t =
1953  (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1954 #endif
1955 }
1956 
1957 /* Calculate the elapsed wall clock tick for the user */
1958 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
1959 
1960 /* Return the current time stamp in nsec */
1961 kmp_uint64 __kmp_now_nsec() {
1962  struct timeval t;
1963  gettimeofday(&t, NULL);
1964  return KMP_NSEC_PER_SEC * t.tv_sec + 1000 * t.tv_usec;
1965 }
1966 
1967 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1968 /* Measure clock ticks per millisecond */
1969 void __kmp_initialize_system_tick() {
1970  kmp_uint64 delay = 100000; // 50~100 usec on most machines.
1971  kmp_uint64 nsec = __kmp_now_nsec();
1972  kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
1973  kmp_uint64 now;
1974  while ((now = __kmp_hardware_timestamp()) < goal)
1975  ;
1976  __kmp_ticks_per_msec =
1977  (kmp_uint64)(1e6 * (delay + (now - goal)) / (__kmp_now_nsec() - nsec));
1978 }
1979 #endif
1980 
1981 /* Determine whether the given address is mapped into the current address
1982  space. */
1983 
1984 int __kmp_is_address_mapped(void *addr) {
1985 
1986  int found = 0;
1987  int rc;
1988 
1989 #if KMP_OS_LINUX || KMP_OS_FREEBSD
1990 
1991  /* On Linux* OS, read the /proc/<pid>/maps pseudo-file to get all the address
1992  ranges mapped into the address space. */
1993 
1994  char *name = __kmp_str_format("/proc/%d/maps", getpid());
1995  FILE *file = NULL;
1996 
1997  file = fopen(name, "r");
1998  KMP_ASSERT(file != NULL);
1999 
2000  for (;;) {
2001 
2002  void *beginning = NULL;
2003  void *ending = NULL;
2004  char perms[5];
2005 
2006  rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
2007  if (rc == EOF) {
2008  break;
2009  }; // if
2010  KMP_ASSERT(rc == 3 &&
2011  KMP_STRLEN(perms) == 4); // Make sure all fields are read.
2012 
2013  // Ending address is not included in the region, but beginning is.
2014  if ((addr >= beginning) && (addr < ending)) {
2015  perms[2] = 0; // 3th and 4th character does not matter.
2016  if (strcmp(perms, "rw") == 0) {
2017  // Memory we are looking for should be readable and writable.
2018  found = 1;
2019  }; // if
2020  break;
2021  }; // if
2022 
2023  }; // forever
2024 
2025  // Free resources.
2026  fclose(file);
2027  KMP_INTERNAL_FREE(name);
2028 
2029 #elif KMP_OS_DARWIN
2030 
2031  /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
2032  using vm interface. */
2033 
2034  int buffer;
2035  vm_size_t count;
2036  rc = vm_read_overwrite(
2037  mach_task_self(), // Task to read memory of.
2038  (vm_address_t)(addr), // Address to read from.
2039  1, // Number of bytes to be read.
2040  (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2041  &count // Address of var to save number of read bytes in.
2042  );
2043  if (rc == 0) {
2044  // Memory successfully read.
2045  found = 1;
2046  }; // if
2047 
2048 #elif KMP_OS_FREEBSD || KMP_OS_NETBSD
2049 
2050  // FIXME(FreeBSD, NetBSD): Implement this
2051  found = 1;
2052 
2053 #else
2054 
2055 #error "Unknown or unsupported OS"
2056 
2057 #endif
2058 
2059  return found;
2060 
2061 } // __kmp_is_address_mapped
2062 
2063 #ifdef USE_LOAD_BALANCE
2064 
2065 #if KMP_OS_DARWIN
2066 
2067 // The function returns the rounded value of the system load average
2068 // during given time interval which depends on the value of
2069 // __kmp_load_balance_interval variable (default is 60 sec, other values
2070 // may be 300 sec or 900 sec).
2071 // It returns -1 in case of error.
2072 int __kmp_get_load_balance(int max) {
2073  double averages[3];
2074  int ret_avg = 0;
2075 
2076  int res = getloadavg(averages, 3);
2077 
2078  // Check __kmp_load_balance_interval to determine which of averages to use.
2079  // getloadavg() may return the number of samples less than requested that is
2080  // less than 3.
2081  if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2082  ret_avg = averages[0]; // 1 min
2083  } else if ((__kmp_load_balance_interval >= 180 &&
2084  __kmp_load_balance_interval < 600) &&
2085  (res >= 2)) {
2086  ret_avg = averages[1]; // 5 min
2087  } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2088  ret_avg = averages[2]; // 15 min
2089  } else { // Error occurred
2090  return -1;
2091  }
2092 
2093  return ret_avg;
2094 }
2095 
2096 #else // Linux* OS
2097 
2098 // The fuction returns number of running (not sleeping) threads, or -1 in case
2099 // of error. Error could be reported if Linux* OS kernel too old (without
2100 // "/proc" support). Counting running threads stops if max running threads
2101 // encountered.
2102 int __kmp_get_load_balance(int max) {
2103  static int permanent_error = 0;
2104  static int glb_running_threads = 0; // Saved count of the running threads for
2105  // the thread balance algortihm
2106  static double glb_call_time = 0; /* Thread balance algorithm call time */
2107 
2108  int running_threads = 0; // Number of running threads in the system.
2109 
2110  DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2111  struct dirent *proc_entry = NULL;
2112 
2113  kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2114  DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2115  struct dirent *task_entry = NULL;
2116  int task_path_fixed_len;
2117 
2118  kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2119  int stat_file = -1;
2120  int stat_path_fixed_len;
2121 
2122  int total_processes = 0; // Total number of processes in system.
2123  int total_threads = 0; // Total number of threads in system.
2124 
2125  double call_time = 0.0;
2126 
2127  __kmp_str_buf_init(&task_path);
2128  __kmp_str_buf_init(&stat_path);
2129 
2130  __kmp_elapsed(&call_time);
2131 
2132  if (glb_call_time &&
2133  (call_time - glb_call_time < __kmp_load_balance_interval)) {
2134  running_threads = glb_running_threads;
2135  goto finish;
2136  }
2137 
2138  glb_call_time = call_time;
2139 
2140  // Do not spend time on scanning "/proc/" if we have a permanent error.
2141  if (permanent_error) {
2142  running_threads = -1;
2143  goto finish;
2144  }; // if
2145 
2146  if (max <= 0) {
2147  max = INT_MAX;
2148  }; // if
2149 
2150  // Open "/proc/" directory.
2151  proc_dir = opendir("/proc");
2152  if (proc_dir == NULL) {
2153  // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2154  // error now and in subsequent calls.
2155  running_threads = -1;
2156  permanent_error = 1;
2157  goto finish;
2158  }; // if
2159 
2160  // Initialize fixed part of task_path. This part will not change.
2161  __kmp_str_buf_cat(&task_path, "/proc/", 6);
2162  task_path_fixed_len = task_path.used; // Remember number of used characters.
2163 
2164  proc_entry = readdir(proc_dir);
2165  while (proc_entry != NULL) {
2166  // Proc entry is a directory and name starts with a digit. Assume it is a
2167  // process' directory.
2168  if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2169 
2170  ++total_processes;
2171  // Make sure init process is the very first in "/proc", so we can replace
2172  // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2173  // 1. We are going to check that total_processes == 1 => d_name == "1" is
2174  // true (where "=>" is implication). Since C++ does not have => operator,
2175  // let us replace it with its equivalent: a => b == ! a || b.
2176  KMP_DEBUG_ASSERT(total_processes != 1 ||
2177  strcmp(proc_entry->d_name, "1") == 0);
2178 
2179  // Construct task_path.
2180  task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2181  __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2182  KMP_STRLEN(proc_entry->d_name));
2183  __kmp_str_buf_cat(&task_path, "/task", 5);
2184 
2185  task_dir = opendir(task_path.str);
2186  if (task_dir == NULL) {
2187  // Process can finish between reading "/proc/" directory entry and
2188  // opening process' "task/" directory. So, in general case we should not
2189  // complain, but have to skip this process and read the next one. But on
2190  // systems with no "task/" support we will spend lot of time to scan
2191  // "/proc/" tree again and again without any benefit. "init" process
2192  // (its pid is 1) should exist always, so, if we cannot open
2193  // "/proc/1/task/" directory, it means "task/" is not supported by
2194  // kernel. Report an error now and in the future.
2195  if (strcmp(proc_entry->d_name, "1") == 0) {
2196  running_threads = -1;
2197  permanent_error = 1;
2198  goto finish;
2199  }; // if
2200  } else {
2201  // Construct fixed part of stat file path.
2202  __kmp_str_buf_clear(&stat_path);
2203  __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2204  __kmp_str_buf_cat(&stat_path, "/", 1);
2205  stat_path_fixed_len = stat_path.used;
2206 
2207  task_entry = readdir(task_dir);
2208  while (task_entry != NULL) {
2209  // It is a directory and name starts with a digit.
2210  if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2211  ++total_threads;
2212 
2213  // Consruct complete stat file path. Easiest way would be:
2214  // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2215  // task_entry->d_name );
2216  // but seriae of __kmp_str_buf_cat works a bit faster.
2217  stat_path.used =
2218  stat_path_fixed_len; // Reset stat path to its fixed part.
2219  __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2220  KMP_STRLEN(task_entry->d_name));
2221  __kmp_str_buf_cat(&stat_path, "/stat", 5);
2222 
2223  // Note: Low-level API (open/read/close) is used. High-level API
2224  // (fopen/fclose) works ~ 30 % slower.
2225  stat_file = open(stat_path.str, O_RDONLY);
2226  if (stat_file == -1) {
2227  // We cannot report an error because task (thread) can terminate
2228  // just before reading this file.
2229  } else {
2230  /* Content of "stat" file looks like:
2231  24285 (program) S ...
2232 
2233  It is a single line (if program name does not include funny
2234  symbols). First number is a thread id, then name of executable
2235  file name in paretheses, then state of the thread. We need just
2236  thread state.
2237 
2238  Good news: Length of program name is 15 characters max. Longer
2239  names are truncated.
2240 
2241  Thus, we need rather short buffer: 15 chars for program name +
2242  2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2243 
2244  Bad news: Program name may contain special symbols like space,
2245  closing parenthesis, or even new line. This makes parsing
2246  "stat" file not 100 % reliable. In case of fanny program names
2247  parsing may fail (report incorrect thread state).
2248 
2249  Parsing "status" file looks more promissing (due to different
2250  file structure and escaping special symbols) but reading and
2251  parsing of "status" file works slower.
2252  -- ln
2253  */
2254  char buffer[65];
2255  int len;
2256  len = read(stat_file, buffer, sizeof(buffer) - 1);
2257  if (len >= 0) {
2258  buffer[len] = 0;
2259  // Using scanf:
2260  // sscanf( buffer, "%*d (%*s) %c ", & state );
2261  // looks very nice, but searching for a closing parenthesis
2262  // works a bit faster.
2263  char *close_parent = strstr(buffer, ") ");
2264  if (close_parent != NULL) {
2265  char state = *(close_parent + 2);
2266  if (state == 'R') {
2267  ++running_threads;
2268  if (running_threads >= max) {
2269  goto finish;
2270  }; // if
2271  }; // if
2272  }; // if
2273  }; // if
2274  close(stat_file);
2275  stat_file = -1;
2276  }; // if
2277  }; // if
2278  task_entry = readdir(task_dir);
2279  }; // while
2280  closedir(task_dir);
2281  task_dir = NULL;
2282  }; // if
2283  }; // if
2284  proc_entry = readdir(proc_dir);
2285  }; // while
2286 
2287  // There _might_ be a timing hole where the thread executing this
2288  // code get skipped in the load balance, and running_threads is 0.
2289  // Assert in the debug builds only!!!
2290  KMP_DEBUG_ASSERT(running_threads > 0);
2291  if (running_threads <= 0) {
2292  running_threads = 1;
2293  }
2294 
2295 finish: // Clean up and exit.
2296  if (proc_dir != NULL) {
2297  closedir(proc_dir);
2298  }; // if
2299  __kmp_str_buf_free(&task_path);
2300  if (task_dir != NULL) {
2301  closedir(task_dir);
2302  }; // if
2303  __kmp_str_buf_free(&stat_path);
2304  if (stat_file != -1) {
2305  close(stat_file);
2306  }; // if
2307 
2308  glb_running_threads = running_threads;
2309 
2310  return running_threads;
2311 
2312 } // __kmp_get_load_balance
2313 
2314 #endif // KMP_OS_DARWIN
2315 
2316 #endif // USE_LOAD_BALANCE
2317 
2318 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \
2319  ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || KMP_ARCH_PPC64)
2320 
2321 // we really only need the case with 1 argument, because CLANG always build
2322 // a struct of pointers to shared variables referenced in the outlined function
2323 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2324  void *p_argv[]
2325 #if OMPT_SUPPORT
2326  ,
2327  void **exit_frame_ptr
2328 #endif
2329  ) {
2330 #if OMPT_SUPPORT
2331  *exit_frame_ptr = __builtin_frame_address(0);
2332 #endif
2333 
2334  switch (argc) {
2335  default:
2336  fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2337  fflush(stderr);
2338  exit(-1);
2339  case 0:
2340  (*pkfn)(&gtid, &tid);
2341  break;
2342  case 1:
2343  (*pkfn)(&gtid, &tid, p_argv[0]);
2344  break;
2345  case 2:
2346  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2347  break;
2348  case 3:
2349  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2350  break;
2351  case 4:
2352  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2353  break;
2354  case 5:
2355  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2356  break;
2357  case 6:
2358  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2359  p_argv[5]);
2360  break;
2361  case 7:
2362  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2363  p_argv[5], p_argv[6]);
2364  break;
2365  case 8:
2366  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2367  p_argv[5], p_argv[6], p_argv[7]);
2368  break;
2369  case 9:
2370  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2371  p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2372  break;
2373  case 10:
2374  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2375  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2376  break;
2377  case 11:
2378  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2379  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2380  break;
2381  case 12:
2382  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2383  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2384  p_argv[11]);
2385  break;
2386  case 13:
2387  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2388  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2389  p_argv[11], p_argv[12]);
2390  break;
2391  case 14:
2392  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2393  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2394  p_argv[11], p_argv[12], p_argv[13]);
2395  break;
2396  case 15:
2397  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2398  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2399  p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2400  break;
2401  }
2402 
2403 #if OMPT_SUPPORT
2404  *exit_frame_ptr = 0;
2405 #endif
2406 
2407  return 1;
2408 }
2409 
2410 #endif
2411 
2412 // end of file //
#define KMP_START_EXPLICIT_TIMER(name)
"Starts" an explicit timer which will need a corresponding KMP_STOP_EXPLICIT_TIMER() macro...
Definition: kmp_stats.h:823
#define KMP_INIT_PARTITIONED_TIMERS(name)
Initializes the paritioned timers to begin with name.
Definition: kmp_stats.h:872