sfepy.discrete.fem.facets module
Helper functions related to mesh facets and Lagrange FE approximation.
Line: ori - iter:
0 - iter0
1 - iter1
Triangle: ori - iter:
0 - iter21
1 - iter12
3 - iter02
4 - iter20
6 - iter10
7 - iter01
Possible couples:
1, 4, 7 <-> 0, 3, 6
Square: ori - iter:
0 - iter10x01y
7 - iter10y01x
11 - iter01y01x
30 - iter01x10y
33 - iter10x10y
52 - iter01y10x
56 - iter10y10x
63 - iter01x01y
Possible couples:
7, 33, 52, 63 <-> 0, 11, 30, 56
-
sfepy.discrete.fem.facets.
build_orientation_map
(n_fp)[source]
The keys are binary masks of the lexicographical ordering of facet
vertices. A bit i set to one means v[i] < v[i+1].
The values are [original_order, permutation], where permutation can be
used to sort facet vertices lexicographically. Hence permuted_facet =
facet[permutation].
-
sfepy.discrete.fem.facets.
get_facet_dof_permutations
(n_fp, igs, order)[source]
Prepare DOF permutation vector for each possible facet orientation.
-
sfepy.discrete.fem.facets.
iter0
(num)[source]
-
sfepy.discrete.fem.facets.
iter01
(num)[source]
-
sfepy.discrete.fem.facets.
iter01x01y
(num)[source]
-
sfepy.discrete.fem.facets.
iter01x10y
(num)[source]
-
sfepy.discrete.fem.facets.
iter01y01x
(num)[source]
-
sfepy.discrete.fem.facets.
iter01y10x
(num)[source]
-
sfepy.discrete.fem.facets.
iter02
(num)[source]
-
sfepy.discrete.fem.facets.
iter1
(num)[source]
-
sfepy.discrete.fem.facets.
iter10
(num)[source]
-
sfepy.discrete.fem.facets.
iter10x01y
(num)[source]
-
sfepy.discrete.fem.facets.
iter10x10y
(num)[source]
-
sfepy.discrete.fem.facets.
iter10y01x
(num)[source]
-
sfepy.discrete.fem.facets.
iter10y10x
(num)[source]
-
sfepy.discrete.fem.facets.
iter12
(num)[source]
-
sfepy.discrete.fem.facets.
iter20
(num)[source]
-
sfepy.discrete.fem.facets.
iter21
(num)[source]
-
sfepy.discrete.fem.facets.
make_line_matrix
(order)[source]
-
sfepy.discrete.fem.facets.
make_square_matrix
(order)[source]
-
sfepy.discrete.fem.facets.
make_triangle_matrix
(order)[source]