sfepy.terms.terms_acoustic module

class sfepy.terms.terms_acoustic.DiffusionSATerm(name, arg_str, integral, region, **kwargs)[source]

Diffusion sensitivity analysis term.

Definition:

\int_{\Omega} \left[ (\dvg \ul{\Vcal}) K_{ij} \nabla_i q\, \nabla_j p - K_{ij} (\nabla_j \ul{\Vcal} \nabla q) \nabla_i p - K_{ij} \nabla_j q (\nabla_i \ul{\Vcal} \nabla p)\right]

Call signature:
d_diffusion_sa (material, parameter_q, parameter_p, parameter_v)
Arguments:
  • material: K_{ij}
  • parameter_q: q
  • parameter_p: p
  • parameter_v: \ul{\Vcal}
arg_shapes = {'parameter_q': 1, 'material': 'D, D', 'parameter_v': 'D', 'parameter_p': 1}
arg_types = ('material', 'parameter_q', 'parameter_p', 'parameter_v')
static function()
get_eval_shape(mat, parameter_q, parameter_p, parameter_v, mode=None, term_mode=None, diff_var=None, **kwargs)[source]
get_fargs(mat, parameter_q, parameter_p, parameter_v, mode=None, term_mode=None, diff_var=None, **kwargs)[source]
name = 'd_diffusion_sa'
class sfepy.terms.terms_acoustic.SurfaceCoupleLayerTerm(name, arg_str, integral, region, **kwargs)[source]

Acoustic ‘layer’ term - derivatives in surface directions.

Definition:

\int_{\Gamma} c q\,\partial_\alpha p, \int_{\Gamma} c \partial_\alpha p\, q, \int_{\Gamma} c \partial_\alpha r\, s,\alpha = 1,\dots,N-1

Call signature:
dw_surface_lcouple (material, virtual, state)
(material, state, virtual)
(material, parameter_1, parameter_2)
Arguments 1:
  • material: c
  • virtual: q
  • state: p
Arguments 2:
  • material: c
  • virtual: q
  • state: p
Arguments 3:
  • material: c
  • parameter_1: s
  • parameter_2: r
arg_shapes = {'parameter_2': 1, 'state': 1, 'material': '1, 1', 'parameter_1': 1, 'virtual': (1, 'state')}
arg_types = (('material', 'virtual', 'state'), ('material', 'state', 'virtual'), ('material', 'parameter_1', 'parameter_2'))
geometries = ['2_3', '2_4']
get_eval_shape(mat, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs)[source]
get_fargs(mat, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs)[source]
integration = 'surface'
modes = ('bv_ns', 'nv_bs', 'eval')
name = 'dw_surface_lcouple'
set_arg_types()[source]
class sfepy.terms.terms_acoustic.SurfaceLaplaceLayerTerm(name, arg_str, integral, region, **kwargs)[source]

Acoustic ‘layer’ term - derivatives in surface directions.

Definition:

\int_{\Gamma} c \partial_\alpha \ul{q}\,\partial_\alpha \ul{p}, \alpha = 1,\dots,N-1

Call signature:
dw_surface_laplace (material, virtual, state)
(material, parameter_2, parameter_1)
Arguments 1:
  • material: c
  • virtual: q
  • state: p
Arguments 2:
  • material: c
  • parameter_1: q
  • parameter_2: p
arg_shapes = {'parameter_2': 1, 'state': 1, 'material': '1, 1', 'parameter_1': 1, 'virtual': (1, 'state')}
arg_types = [('material', 'virtual', 'state'), ('material', 'parameter_2', 'parameter_1')]
geometries = ['2_3', '2_4']
get_eval_shape(mat, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs)[source]
get_fargs(mat, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs)[source]
integration = 'surface'
modes = ('weak', 'eval')
name = 'dw_surface_laplace'
set_arg_types()[source]